Setup Menus in Admin Panel

+447946739882, +2348151453146   INFO@CHESSSUBSEAENGINEERING.ORG
     
Sale!

Fixed Offshore Platforms & Suction Piles Structural Design & Simulation with SACS for Civil Engineers (FOPSPSDS) Level 1 & Level 2

Original price was: $3450.00.Current price is: $1550.00. exc VAT

Purpose

The purpose of the FOPSPSDS Level 1 & Level 2 course is to provide civil engineers with the necessary knowledge and skills to effectively design and simulate fixed offshore platforms and suction piles. The course aims to equip participants with the expertise to contribute to the safe and reliable structural design of offshore structures in accordance with industry standards and best practices.

FOPSPSDS Level 1 & Level 2 gives a comprehensive understanding of offshore fixed platform with comprehensive analyses, including full non-linear, dynamic, and impact effects. Use integrated modules to model pile-soil interaction and apply wind, wave, seismic, ship impact, dropped object, and blast loads.​​

Course Objectives

  • This course aims to bridge the knowledge gap in the structural design and simulation of fixed offshore platforms and suction piles for civil engineers. It focuses on teaching participants the fundamental principles, design methodologies, and analysis techniques specific to offshore structures, allowing them to develop a deep understanding of the structural behavior and performance of these systems.
  • The FOPSPSDS Level 1 & Level 2 course aims to develop participants’ proficiency in using the SACS software for structural analysis and simulation. Participants will learn how to apply advanced computational tools to model, analyze, and optimize the structural behavior of fixed offshore platforms and suction piles, considering various loading conditions and environmental factors.
  • By completing the FOPSPSDS Level 1 & Level 2 course, civil engineers will acquire the necessary expertise to contribute to the design and simulation of fixed offshore platforms and suction piles. The purpose is to develop professionals who can ensure the structural integrity, reliability, and performance of offshore structures through rigorous analysis, design optimization, and adherence to industry standards.

Training Mode: Online

Category:

Description

The Fixed Offshore Platforms & Suction Piles Structural Design & Simulation with SACS for Civil Engineers (FOPSPSDS) Level 1 & Level 2 course provides civil engineers with a comprehensive understanding of the structural design and simulation of fixed offshore platforms and suction piles. The course covers key aspects of design methodologies, analysis techniques, and simulation using the SACS software for offshore structural engineering.

The Level 1 course introduces participants to the fundamental principles and concepts of structural design for fixed offshore platforms and suction piles. It covers topics such as load calculations, design codes and standards, structural configurations, and material selection for offshore structures.

The FOPSPSDS Level 1 & Level 2 course focuses on teaching participants how to use the SACS software for structural analysis and simulation of offshore platforms and suction piles. Participants will learn how to model the structures, apply various load cases, perform structural analysis, and interpret simulation results for design validation and optimization.

Throughout the course, participants will engage in practical exercises and case studies, allowing them to apply the learned concepts to real-world scenarios. They will gain hands-on experience in using the SACS software to design and simulate fixed offshore platforms and suction piles, considering factors such as wave, wind, and seismic loads.

By completing the FOPSPSDS Level 1 & Level 2 course, civil engineers will acquire the necessary knowledge and skills to effectively design and simulate fixed offshore platforms and suction piles. The course aims to enhance their understanding of structural engineering principles and equip them with the ability to contribute to the safe and efficient design of offshore structures, ensuring compliance with industry standards and regulatory requirements.

Course Outline

Introduction
Types of Offshore Structures
Fixed Platforms
Compliant Structures
Floating Structures
Subsea System
Fixed Platform Concepts

Module 1: Jacket Fixed Platforms Design Methodology

Design Stages
FEED
Basic Design
Detailed Design

Module 2: Loads on Jacket Fixed Platforms

Load Types
Gravity Loads
Environmental Loads
Mud Loads
Load Estimation and Distribution
Load Combinations

Module 3: Jacket Fixed Platforms Materials & Corrosion

Structural Steel
Structural Member Classification
Steel Grades
Manufacturing
Chemical Requirements
Carbon Equivalent (CE)
Mechanical Requirements
Notch Toughness Requirements
Supplementary Requirements
Corrosion
Seawater Corrosion
Factors influencing corrosion
Types of corrosion
Rates of corrosion
Corrosion Protection
Cathodic Protection
Sacrificial Anode System

Module 4: Jacket Fixed Platforms Simulation

Structure Geometry selection
Geometry Simulation
Axis System
Joints or Nodes
Members and properties
Offsets and Eccentricities
Wish-bone Connections
Dummy Structure Models
Foundation Simulation
Pile Modelling
Pile Group Effect
Load Simulation
Dead Loads
Equipment Loads
Fluid Loads
Drilling Loads
Live Loads
Wind, Wave and Current

Module 5: Jacket Fixed Platforms In-place Analyses

Principle
Geometry Simulation
Simplified Topside Model
Load Simulation
Topsides Load COG Shift Envelope
Minimum and Maximum Water Depth
Maximum Wave Loads
Allowable Stresses
Dynamic Analysis

Module 6: Jacket Fixed Platforms Dynamic Analysis

Principle
Geometry Simulation
Load Simulation
Computer Generated Mass
Direct Input Mass
Foundation Simulation
Solution
Dynamic Amplification factor

Module 7: Jacket Fixed Platforms Fatigue Analysis

Deterministic Fatigue Analysis
Wave Scatter Data
Spectral Fatigue Analysis
Wave Spectra
Wave Theory Selection
Wave Steepness
Transfer Functions
Selection of Frequencies
Stress Amplitudes
Fatigue Life Calculation
S-N Curves
Stress Concentration Factors
Foundation Linearisation

Module 8: Offshore Production Jacket Platform Structural Modeling & Simulation with SACS

Impact Vessels
Method of Computing Impact Energy Dissipation
Energy dissipation by member
Energy Dissipation by Overall jacket deflection
Structural Strength During Impact
Push Over Analysis

Workshop 1: Starting SACS Executive and Setting up Working Environment
Workshop 2: Structural Modeling of Jacket, Pile and Conductor via Definition Wizard
Workshop 3: Offshore Production Jacket Platform Structural Modeling of Horizontal Frames
Workshop 4: Offshore Production Jacket Platform Structural Modeling of Deck Frames – Cellar & Main Decks
Workshop 5: Offshore Production Jacket Platform Structural Modeling of Joint Connection Design
Workshop 6: Offshore Production Jacket Platform Topside Design Theory Based On API-RP2
Workshop 7: Offshore Production Jacket Platform Environmental Load Analysis with SACS
Workshop 8: Offshore Production Jacket Platform In Place Analysis Theory Based On API-RP2
Workshop 9: Offshore Production Jacket Platform Gravity Load / Weight Analysis Theory based on API RP 2A
Workshop 10: Offshore Production Jacket Platform Gravity Load / Weight Analysis with SACS
Workshop 11: Offshore Production Jacket Platform Static Analysis with Non Linear Foundation with SACS
Workshop 12: Offshore Production Jacket Platform Basic Static Analysis
Workshop 13: Offshore Jacket Single Pile Analysis
Workshop 14: Offshore Jacket Ship Impact Analysis

Module 1: Loads on Offshore Structures

Lecture 1.0: Loads on Offshore Structures
Lecture 1.1: Loads on Offshore Structures
Lecture 1.2: Loads on Offshore Structures
Lecture 1.3: Loads on Offshore Structures
Lecture 1.4: Loads on Offshore Structures
Lecture 1.5: Loads on Offshore Structures
Lecture 1.6: Loads on Offshore Structures

Module 2: Concepts of Fixed Offshore Platform Deck and Jacket

Lecture 2.0: Concepts of Fixed Offshore Platform Deck and Jacket
Lecture 2.1: Concepts of Fixed Offshore Platform Deck and Jacket
Lecture 2.2: Concepts of Fixed Offshore Platform Deck and Jacket
Lecture 2.3: Concepts of Fixed Offshore Platform Deck and Jacket
Lecture 2.4: Concepts of Fixed Offshore Platform Deck and Jacket

Module 3: Steel Tubular Member Design

Lecture 3.0: Steel Tubular Member Design
Lecture 3.1: Steel Tubular Member Design
Lecture 3.2: Steel Tubular Member Design
Lecture 3.3: Steel Tubular Member Design
Lecture 3.4: Steel Tubular Member Design

Module 4: Tubular Joint Design for Static & Cyclic Loads

Lecture 4.0: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.1: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.2: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.3: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.4: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.5: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.6: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.7: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.8: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.9: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.10: Tubular Joint Design for Static & Cyclic Loads
Lecture 4.11: Tubular Joint Design for Static & Cyclic Loads

Module 5: Tubular Joint Design for Static & Cyclic Loads

Lecture 5.0: Jackup Rigs Analysis & Design
Lecture 5.1: Jackup Rigs Analysis & Design
Lecture 5.2: Jackup Rigs Analysis & Design
Lecture 5.3: Jackup Rigs Analysis & Design
Lecture 5.4: Jackup Rigs Analysis & Design
Lecture 6.0: Design Against Accidental Loads
Lecture 6.1: Design Against Accidental Loads
Lecture 6.2: Design Against Accidental Loads
Lecture 6.3: Design Against Accidental Loads
Lecture 6.4: Design Against Accidental Loads
Lecture 6.5: Design Against Accidental Loads
Lecture 6.6: Design Against Accidental Loads
Lecture 6.7: Design Against Accidental Loads

Technical Support References

Ref 1: Jacket Fixed Platforms Design Methodology
Ref 2: Loads on Jacket Fixed Platforms
Ref 3: Jacket Fixed Platforms Materials & Corrosion
Ref 4: Jacket Fixed Platforms Inspection
Ref 5: Jacket Fixed Platforms Maintenance
Ref 6: Jacket Fixed Platforms Repair
Ref 7: Jacket Fixed Platforms Simulation with SACS
Ref 8: Jacket Fixed Platforms In-place Analyses with SACS
Ref 9: Jacket Fixed Platforms Dynamic Analysis with SACS
Ref 10: Jacket Fixed Platforms Fatigue Analysis with SACS
Ref 11: Jacket Fixed Platforms Push Over Analysis with SACS

Assessment

Participant underpinning knowledge of Fixed Offshore Platforms & Suction Piles Structural Design & Simulation with SACs at Level 1 to Level 2 will be accessed with on the job fixed production platform design case studies to be presented towards end of course.

Professional Certificate

Issued directly by Chess Subsea Engineering Europe.

Participant may be presented for Offshore Petroleum Training Organization (OPITO) Certification.

How to Register

Click here to download registeration booklet on msword and email completed booklet to info@chesssubseaengineering.org directly.

© 2023. All Rights Reserved.
X